Urinary Bladder Matrix Does Not Improve Tenogenesis in an In Vitro Equine Model

J Orthop Res. 2019 Aug;37(8):1848-1859. doi: 10.1002/jor.24320. Epub 2019 May 15.

Abstract

Extracellular matrix (ECM) is responsible for tendon strength and elasticity. Healed tendon ECM lacks structural integrity, leading to reinjury. Porcine urinary bladder matrix (UBM) provides a scaffold and source of bioactive proteins to improve tissue healing, but has received limited attention for treating tendon injuries. The objective of this study was to evaluate the ability of UBM to induce matrix organization and tenogenesis using a novel in vitro model. We hypothesized that addition of UBM to tendon ECM hydrogels would improve matrix organization and cell differentiation. Hydrogels seeded with bone marrow cells (n = 6 adult horses) were cast using rat tail tendon ECM ± UBM, fixed under static tension and harvested at 7 and 21 days for construct contraction, cell viability, histology, biochemistry, and gene expression. By day 7, UBM constructs contracted significantly from baseline, whereas control constructs did not. Both control and UBM constructs contracted significantly by day 21. In both groups, cells remained viable over time and changed from round and randomly oriented to elongated along lines of tension with visible compaction of the ECM. There were no differences over time or between treatments for nuclear aspect ratio, DNA, or glycosaminoglycan content. Decorin, matrix metalloproteinase 13, and scleraxis expression increased significantly over time, but not in response to UBM treatment. Mohawk expression was constant over time. Cartilage oligomeric matrix protein expression decreased over time in both groups. Using a novel ECM hydrogel model, substantial matrix organization and cell differentiation occurred; however, the addition of UBM failed to induce greater matrix organization than tendon ECM alone. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1848-1859, 2019.

Keywords: extracellular matrix; tendon healing; tendon hydrogel; tissue engineering; urinary bladder matrix.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Extracellular Matrix / transplantation*
  • Female
  • Horses
  • Hydrogels
  • Male
  • Rats
  • Regeneration
  • Swine
  • Tendon Injuries / therapy*
  • Tendons / physiology
  • Tissue Scaffolds*
  • Urinary Bladder

Substances

  • Hydrogels