Patients with acute myeloid leukemia have a very poor prognosis related to a high rate of relapse and drug-related toxicity. The ability of leukemia stem cells (LSCs) to survive chemotherapy is primarily responsible for relapse, and eliminating LSCs is ultimately essential for cure. We developed novel disulfide-crosslinked CLL1-targeting micelles (DC-CTM), which can deliver high concentrations of daunorubicin (DNR) into both bulk leukemia cells and LSCs. Compared to free DNR, DC-CTM-DNR had a longer half-life, increased DNR area under the curve concentration by 11-fold, and exhibited a superior toxicity profile. In patient-derived AML xenograft models, DC-CTM-DNR treatment led to significant decreases in AML engraftment and impairment of secondary transplantation compared to control groups. Collectively, we demonstrate superior anti-LSC/AML efficacy, and preferable pharmacokinetic and toxicity profiles of DC-CTM-DNR compared to free DNR. DC-CTM-DNR has the potential to significantly improve treatment outcomes and reduce therapy-related morbidity and mortality for patients with AML.
Keywords: AML; CLL1; Daunorubicin; Leukemia stem cells; Nanoparticle.
Published by Elsevier Inc.