A new approach for trajectory tracking on uncertain complex networks is proposed. To achieve this goal, a neural controller is applied to a small fraction of nodes (pinned ones). Such controller is composed of an on-line identifier based on a recurrent high-order neural network, and an inverse optimal controller to track the desired trajectory; a complete stability analysis is also included. In order to verify the applicability and good performance of the proposed control scheme, a representative example is simulated, which consists of a complex network with each node described by a chaotic Lorenz oscillator.