Imaging of Activated T Cells as an Early Predictor of Immune Response to Anti-PD-1 Therapy

Cancer Res. 2019 Jul 1;79(13):3455-3465. doi: 10.1158/0008-5472.CAN-19-0267. Epub 2019 May 7.

Abstract

Compelling evidence points to immune cell infiltration as a critical component of successful immunotherapy. However, there are currently no clinically available, noninvasive methods capable of evaluating immune contexture prior to or during immunotherapy. In this study, we evaluate a T-cell-specific PET agent, [18F]F-AraG, as an imaging biomarker predictive of response to checkpoint inhibitor therapy. We determined the specificity of the tracer for activated T cells in vitro and in a virally induced model of rhabdomyosarcoma. Of all immune cells tested, activated human CD8+ effector cells showed the highest accumulation of [18F]F-AraG. Isolation of lymphocytes from the rhabdomyosarcoma tumors showed that more than 80% of the intratumoral signal came from accumulation of [18F]F-AraG in immune cells, primarily CD8+ and CD4+. Longitudinal monitoring of MC38 tumor-bearing mice undergoing anti-PD-1 treatment revealed differences in signal between PD-1 and isotype antibody-treated mice early into treatment. The differences in [18F]F-AraG signal were also apparent between responders and nonresponders to anti-PD-1 therapy. Importantly, we found that the signal in the tumor-draining lymph nodes provides key information about response to anti-PD-1 therapy. Overall, [18F]F-AraG has potential to serve as a much needed immunomonitoring clinical tool for timely evaluation of immunotherapy. SIGNIFICANCE: These findings reveal differences in T-cell activation between responders and nonresponders early into anti-PD-1 treatment, which may impact many facets of immuno-oncology, including patient selection, management, and development of novel combinatorial approaches.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Monoclonal / pharmacology*
  • CD8-Positive T-Lymphocytes / drug effects
  • CD8-Positive T-Lymphocytes / immunology*
  • Female
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Immunotherapy*
  • Lymphocyte Activation / drug effects
  • Lymphocyte Activation / immunology*
  • Lymphocytes, Tumor-Infiltrating / drug effects
  • Lymphocytes, Tumor-Infiltrating / immunology
  • Mice
  • Mice, Inbred C57BL
  • Positron-Emission Tomography / methods
  • Programmed Cell Death 1 Receptor / antagonists & inhibitors*
  • Rhabdomyosarcoma / drug therapy
  • Rhabdomyosarcoma / immunology*
  • Rhabdomyosarcoma / metabolism
  • Rhabdomyosarcoma / pathology
  • Tumor Cells, Cultured

Substances

  • Antibodies, Monoclonal
  • Programmed Cell Death 1 Receptor