Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data

BMC Bioinformatics. 2019 May 1;20(Suppl 7):195. doi: 10.1186/s12859-019-2734-4.

Abstract

Background: Lipid metabolism reprogramming is a hallmark for tumor which contributes to tumorigenesis and progression, but the commonality and difference of lipid metabolism among pan-cancer is not fully investigated. Increasing evidences suggest that the alterations in tumor metabolism, including metabolite abundance and accumulation of metabolic products, lead to local immunosuppression in the tumor microenvironment. An integrated analysis of lipid metabolism in cancers from different tissues using multiple omics data may provide novel insight into the understanding of tumorigenesis and progression.

Results: Through systematic analysis of the multiple omics data from TCGA, we found that the most-widely altered lipid metabolism pathways in pan-cancer are fatty acid metabolism, arachidonic acid metabolism, cholesterol metabolism and PPAR signaling. Gene expression profiles of fatty acid metabolism show commonalities across pan-cancer, while the alteration in cholesterol metabolism and arachidonic acid metabolism differ with tissue origin, suggesting tissue specific lipid metabolism features in different tumor types. An integrated analysis of gene expression, DNA methylation and mutations revealed factors that regulate gene expression, including the differentially methylated sites and mutations of the lipid genes, as well as mutation and differential expression of the up-stream transcription factors for the lipid metabolism pathways. Correlation analysis of the proportion of immune cells in the tumor microenvironment and the expression of lipid metabolism genes revealed immune-related differentially expressed lipid metabolic genes, indicating the potential crosstalk between lipid metabolism and immune response. Genes related to lipid metabolism and immune response that are associated with poor prognosis were discovered including HMGCS2, GPX2 and CD36, which may provide clues for tumor biomarkers or therapeutic targets.

Conclusions: Our study provides an integrated analysis of lipid metabolism in pan-cancer, highlights the perturbation of key metabolism processes in tumorigenesis and clarificates the regulation mechanism of abnormal lipid metabolism and effects of lipid metabolism on tumor immune microenvironment. This study also provides new clues for biomarkers or therapeutic targets of lipid metabolism in tumors.

Keywords: Lipid metabolism; Multiple omics analysis; Pan-cancer; Tumor immune micro-environment.

MeSH terms

  • Biomarkers, Tumor / genetics*
  • Computational Biology / methods
  • DNA Methylation*
  • Gene Expression Profiling
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Lipid Metabolism / genetics*
  • Mutation
  • Neoplasms / genetics*
  • Neoplasms / immunology
  • Neoplasms / metabolism*
  • Neoplasms / pathology
  • Transcriptome
  • Tumor Microenvironment / genetics
  • Tumor Microenvironment / immunology*

Substances

  • Biomarkers, Tumor