Visfatin Promotes Monocyte Adhesion by Upregulating ICAM-1 and VCAM-1 Expression in Endothelial Cells via Activation of p38-PI3K-Akt Signaling and Subsequent ROS Production and IKK/NF-κB Activation

Cell Physiol Biochem. 2019;52(6):1398-1411. doi: 10.33594/000000098.

Abstract

Background/aims: Visfatin is known to act as a mediator in several metabolic disorders, such as obesity, diabetes, and cardiovascular diseases. This study aimed to investigate the effect of visfatin on the adhesion of THP-1 monocytes to human vascular endothelial cells and the underlying mechanism.

Methods: Monocytes adhesion to endothelial cells was determined by using fluorescence-labeled monocytes. ICAM-1 and VCAM-1 expression in endothelial cells were measured by western blotting. Production of reactive oxygen species (ROS) was measured by using a fluorescent dye. The amounts of nuclear factor-kappa B (NF-κB) and phosphorylation of inhibitory factor of NF-κB (IκB) were determined by using western blot analysis. The translocation of NF-κB from the cytoplasm to the nucleus was determined by using immunofluorescence.

Results: Here we showed that visfatin significantly caused the upregulation of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells, as well as enhanced monocyte adhesion to endothelial cells. Moreover, we found that inhibition of PI3K, Akt, and p38 MAPK activation significantly prevented visfatin-enhanced expression of ICAM-1 and VCAM-1 and monocyte adhesion to endothelial cells. Visfatin enhanced ROS production and IKK/NF-кB activation and then led to upregulation of ICAM-1 and VCAM-1 and enhanced monocyte adhesion to endothelial cells. These effects were also p38/PI3K/Akt-dependent.

Conclusion: These results demonstrated that visfatin promoted monocyte-endothelial cell adhesion by increasing ICAM-1 and VCAM-1 expression via the activation of p38/PI3K/Akt signaling and downstream ROS production and IKK/NF-кB activation.

Keywords: Endothelial cell; ICAM-1; Monocyte adhesion; VCAM-1; Visfatin.

MeSH terms

  • Cell Adhesion / drug effects*
  • Endothelial Cells / cytology
  • Endothelial Cells / metabolism
  • Humans
  • I-kappa B Proteins / metabolism
  • Intercellular Adhesion Molecule-1 / metabolism
  • Mitogen-Activated Protein Kinase 1 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 3 / metabolism
  • Monocytes / cytology
  • NADPH Oxidases / metabolism
  • NF-kappa B / metabolism
  • Nicotinamide Phosphoribosyltransferase / pharmacology*
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphoinositide-3 Kinase Inhibitors
  • Phosphorylation / drug effects
  • Protein Kinase Inhibitors / pharmacology
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors
  • Proto-Oncogene Proteins c-akt / metabolism
  • Reactive Oxygen Species / metabolism*
  • Signal Transduction / drug effects*
  • Up-Regulation / drug effects*
  • Vascular Cell Adhesion Molecule-1 / metabolism
  • p38 Mitogen-Activated Protein Kinases / antagonists & inhibitors
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • I-kappa B Proteins
  • NF-kappa B
  • Phosphoinositide-3 Kinase Inhibitors
  • Protein Kinase Inhibitors
  • Reactive Oxygen Species
  • Vascular Cell Adhesion Molecule-1
  • Intercellular Adhesion Molecule-1
  • NADPH Oxidases
  • Nicotinamide Phosphoribosyltransferase
  • Proto-Oncogene Proteins c-akt
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • p38 Mitogen-Activated Protein Kinases