Accumulation of plastic pollution in aquatic ecosystems is the predictable result of high demand for plastic functionalities, optimized production with economies of scale, and recalcitrance. Strategies are needed for end-of-life conversion of recalcitrant plastics into useful feedstocks and for transition to materials that are biodegradable, non-bioaccumulative, and non-toxic. Promising alternatives are the polyhydroxyalkanoates (PHAs), a vast family of polymers amenable to decentralized production from renewable feedstocks. Establishment of a global-scale PHA-based industry will require identification of PHAs with tailored properties for use as 'drop-in' replacements for existing plastics; use of low-cost renewable/waste-derived feedstocks; high productivity cultures that may be genetically modified microorganisms or non-axenic mixed cultures maintained by selection pressures that favor high PHA-producing strains; and low-cost extraction/purification schemes.
Copyright © 2019 Elsevier Ltd. All rights reserved.