Heat treatment alleviates the growth and photosynthetic impairment of transplastomic plants expressing Leishmania infantum Hsp83-Toxoplasma gondii SAG1 fusion protein

Plant Sci. 2019 Jul:284:117-126. doi: 10.1016/j.plantsci.2019.04.011. Epub 2019 Apr 13.

Abstract

Previously, we showed that transplastomic tobacco plants expressing the LiHsp83-SAG1 fusion protein displayed a chlorotic phenotype and growth retardation, while plants expressing the SAG1 and GRA4 antigens alone did not. We conducted a comprehensive examination of the metabolic and photosynthetic parameters that could be affecting the normal growth of LiHsp83-SAG1 plants in order to understand the origin of these pleiotropic effects. These plants presented all photosynthetic pigments and parameters related to PSII efficiency significantly diminished. However, the expression of CHLI, RSSU and LHCa/b genes did not show significant differences between LiHsp83-SAG1 and control plants. Total protein, starch, and soluble sugar contents were also greatly reduced in LiHsp83-SAG1 plants. Since Hsp90 s are constitutively expressed at much higher concentrations at high temperatures, we tested if the fitness of LiHsp83-SAG1 over-expressing LiHsp83 would improve after heat treatment. LiHsp83-SAG1 plants showed an important alleviation of their phenotype and an evident recovery of the PSII function. As far as we know, this is the first report where it is demonstrated that a transplastomic line performs much better at higher temperatures. Finally, we detected that LiHsp83-SAG1 protein could be binding to key photosynthesis-related proteins at 37 °C. Our results suggest that the excess of this molecular chaperone could benefit the plant in a possible heat shock and prevent the expected denaturation of proteins. However, the LiHsp83-SAG1 protein content was weakly decreased in heat-treated plants. Therefore, we cannot rule out that the alleviation observed at 37 °C may be partially due to a reduction of the levels of the recombinant protein.

Keywords: Heat shock protein; Pleiotropic effects; Tobacco; Toxoplasma gondii; Transplastomic plants.

MeSH terms

  • Antigens, Protozoan / metabolism*
  • Chlorophyll / metabolism
  • Gas Chromatography-Mass Spectrometry
  • Gene Expression Profiling
  • Heat-Shock Proteins / metabolism*
  • Hot Temperature
  • Immunoprecipitation
  • Leishmania infantum / metabolism*
  • Nicotiana
  • Photosynthesis*
  • Plant Leaves / metabolism
  • Plants, Genetically Modified / growth & development
  • Plants, Genetically Modified / metabolism*
  • Plants, Genetically Modified / parasitology
  • Protozoan Proteins / metabolism*
  • Recombinant Fusion Proteins / metabolism*
  • Toxoplasma / metabolism*

Substances

  • Antigens, Protozoan
  • Heat-Shock Proteins
  • Hsp83 protein, protozoan
  • Protozoan Proteins
  • Recombinant Fusion Proteins
  • SAG1 antigen, Toxoplasma
  • Chlorophyll