Wnt signaling pathways direct key physiological decisions in development. Here, we establish a role for a pleckstrin homology domain-containing protein, PLEKHA4, as a modulator of signaling strength in Wnt-receiving cells. PLEKHA4 oligomerizes into clusters at PI(4,5)P2-rich regions of the plasma membrane and recruits the Cullin-3 (CUL3) E3 ubiquitin ligase substrate adaptor Kelch-like protein 12 (KLHL12) to these assemblies. This recruitment decreases CUL3-KLHL12-mediated polyubiquitination of Dishevelled, a central intermediate in canonical and non-canonical Wnt signaling. Knockdown of PLEKHA4 in mammalian cells demonstrates that PLEKHA4 positively regulates canonical and non-canonical Wnt signaling via these effects on the Dishevelled polyubiquitination machinery. In vivo knockout of the Drosophila melanogaster PLEKHA4 homolog, kramer, selectively affects the non-canonical, planar cell polarity (PCP) signaling pathway. We propose that PLEKHA4 tunes the sensitivities of cells toward the stimulation of Wnt or PCP signaling by sequestering a key E3 ligase adaptor controlling Dishevelled polyubiquitination within PI(4,5)P2-rich plasma membrane clusters.
Keywords: Cullin-3; Dishevelled; Drosophila; PI(4,5)P(2); Wnt signaling; kramer; phosphoinositide signaling; planar cell polarity; pleckstrin homology domain; ubiquitination.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.