Background: Rapid on-site diagnosis facilitates tuberculosis control. Performing Xpert MTB/RIF (Xpert) at point of care is feasible, even when performed by minimally trained health-care workers, and when compared with point-of-care smear microscopy, reduces time to diagnosis and pretreatment loss to follow-up. However, whether Xpert is cost-effective at point of care remains unclear.
Methods: We empirically collected cost (US$, 2014) and clinical outcome data from participants presenting to primary health-care facilities in four African countries (South Africa, Zambia, Zimbabwe, and Tanzania) during the TB-NEAT trial. Costs were determined using an bottom-up ingredients approach. Effectiveness measures from the trial included number of cases diagnosed, initiated on treatment, and completing treatment. The primary outcome was the incremental cost-effectiveness of point-of-care Xpert relative to smear microscopy. The study was performed from the perspective of the health-care provider.
Findings: Using data from 1502 patients, we calculated that the mean Xpert unit cost was lower when performed at a centralised laboratory (Lab Xpert) rather than at point of care ($23·00 [95% CI 22·12-23·88] vs $28·03 [26·19-29·87]). Per 1000 patients screened, and relative to smear microscopy, point-of-care Xpert cost an additional $35 529 (27 054-40 025) and was associated with an additional 24·3 treatment initiations ([-20·0 to 68·5]; $1464 per treatment), 63·4 same-day treatment initiations ([27·3-99·4]; $511 per same-day treatment), and 29·4 treatment completions ([-6·9 to 65·6]; $1211 per completion). Xpert costs were most sensitive to test volume, whereas incremental outcomes were most sensitive to the number of patients initiating and completing treatment. The probability of point-of-care Xpert being cost-effective was 90% at a willingness to pay of $3820 per treatment completion.
Interpretation: In southern Africa, although point-of-care Xpert unit cost is higher than Lab Xpert, it is likely to offer good value for money relative to smear microscopy. With the current availability of point-of-care nucleic acid amplification platforms (eg, Xpert Edge), these data inform much needed investment and resource allocation strategies in tuberculosis endemic settings.
Funding: European Union European and Developing Countries Clinical Trials Partnership.
Copyright © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.