Dual specificity LAMMER kinase has been reported to be conserved across species ranging from yeasts to animals and has multiple functions. Candida albicans undergoes dimorphic switching between yeast cells and hyphal growth forms as its key virulence factors. Deletion of KNS1, which encodes for LAMMER kinase in C. albicans, led to pseudohyphal growth on YPD media and defects in filamentous growth both on spider and YPD solid media containing 10% serum. These cells exhibited expanded central wrinkled regions and specifically reduced peripheral filaments. Among the several stresses tested, the kns1Δ strains showed sensitivity to cell-wall and DNA-replicative stress. Under fluorescent microscopy, an increase in chitin decomposition was observed near the bud necks and septa in kns1Δ cells. When the expression levels of genes for cell wall integrity (CWI) and the DNA repair mechanism were tested, the kns1 double-deletion cells showed abnormal patterns compared to wild-type cells; The transcript levels of genes for glycosylphosphatidylinositol (GPI)-anchored proteins were increased upon calcofluor white (CFW) treatment. Under DNA replicative stress, the expression of MluI-cell cycle box binding factor (MBF)-targeted genes, which are expressed during the G1/S transition in the cell cycle, was not increased in the kns1 double-deletion cells. This strain showed increased adhesion to the surface of an agar plate and zebrafish embryo. These results demonstrate that Kns1 is involved in dimorphic transition, cell wall integrity, response to DNA replicative stress, and adherence to the host cell surface in C. albicans.
Keywords: Candida albicans; DNA replicative stress; LAMMER kinase; adhesive growth; cell wall stress.
© The Author(s) 2019. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology.