The ability of adipose tissue to expand is dependent on adipocyte differentiation and adipose tissue glucose disposal. The CCAAT/enhancer-binding protein alpha (CEBPA) enhances the expression of the Slc2a4 gene and GLUT4 protein, which are markers of adipocyte differentiation/glucose disposal. We hypothesized estradiol (E2) facilitates adipocyte differentiation/glucose disposal by an estrogen receptor 1 (ESR1)-dependent and CEBPA-mediated mechanism. Our results suggest that E2 (10 nM) has a positive effect on 3T3-L1 adipocyte differentiation (days 2-8), lipid accumulation, Slc2a4 and Cebpa mRNA expression, total GLUT4 and nuclear CEBPA contents, and CEBP/Slc2a4-binding activity. Esr1 silencing (∼50%) in mature adipocytes abrogates the 24-h E2 effects on nuclear CEBPA content, Slc2a4/GLUT4 expression and GLUT4 translocation to the cell membrane. Thus, E2 stimulates adipocyte differentiation and Slc2a4/GLUT4 expression in an ESR1/CEBPA-mediated pathway. Our data provide mechanistic insight demonstrating E2 participates in adipose-tissue differentiation and glucose transporter expression which ultimately can improve adipose tissue expandability and glycemic control.
Keywords: 3T3-L1 adipocytes; Adipogenesis; CEBPA; ESR1-Silencing; GLUT4; Slc2a4.
Copyright © 2019 Elsevier B.V. All rights reserved.