Cities around the world have converged on structural and environmental characteristics that exert similar eco-evolutionary pressures on local communities. However, evaluating how urban biodiversity responds to urban intensification remains poorly understood because of the challenges in capturing the diversity of a range of taxa within and across multiple cities from different types of urbanization. Here we utilize a growing resource-citizen science data. We analyzed 66,209 observations representing 5,209 species generated by the City Nature Challenge project on the iNaturalist platform, in conjunction with remote sensing (NLCD2011) environmental data, to test for urban biotic homogenization at increasing levels of urban intensity across 14 metropolitan cities in the United States. Based on community composition analyses, we found that while similarities occur to an extent, urban biodiversity is often much more a reflection of the taxa living locally in a region. At the same time, the communities found in high-intensity development were less explained by regional context than communities from other land cover types were. We also found that the most commonly observed species are often shared between cities and are non-endemic and/or have a distribution facilitated by humans. This study highlights the value of citizen science data in answering questions in urban ecology.
Keywords: Biotic homogenization; Citizen science; NLCD; Urban ecology; iNaturalist.