Contralateral hemi-fifth-lumbar nerve transfer for unilateral lower limb dysfunction due to incomplete traumatic spinal cord injury: A report of two cases

Microsurgery. 2020 Feb;40(2):234-240. doi: 10.1002/micr.30470. Epub 2019 May 21.

Abstract

Current strategies for the chronic stage of spinal cord injury (SCI) had seen little progress. In this report, we present the use of contralateral L5 nerve transfer for the treatment of incomplete SCI patients with unilateral lower limb dysfunction in two male patients. One was diagnosed with L2 vertebral fracture and dislocation combined with coni medullaris injury 10 months prior, and the other was diagnosed with T6 and T7 vertebral fractures with SCI 24 months prior. The patients were treated with decompression surgery within 24 hr after injury. The patients reached a recovery plateau after 6-8 months of spontaneous recovery of locomotion and sustained paralysis in the right leg and were left confined to the wheelchair. The score on the lower-extremity Fugl-Meyer assessment (FMA-LE) was 7 for both patients. The patients were then enrolled, and they underwent half of the anterior root of the contralateral L5 transfer to S1 and S2 to improve lower limb motor function. A posterior approach was performed to expose the L5, S1, and S2 nerve roots. Half of the anterior root of the left L5 was cut, and end-to-end neurorrhaphy from the left L5 to the right S1 and S2 was performed subdurally. After the surgery, routine rehabilitation treatments were prescribed. Muscle strength decreased transiently in the donor-side before recovering within 12 months postoperatively. Muscle strength was significantly improved on the affected side 2 years postoperatively, when the FMA-LE scores increased to 14 and 15, respectively. The patients regained independent walking ability with crutches. This report suggests that contralateral hemi-5th-lumbar nerve transfer is safe and can benefit incomplete SCI patients with unilateral lower limb dysfunction.

Publication types

  • Case Reports

MeSH terms

  • Humans
  • Lower Extremity / surgery
  • Lumbosacral Region
  • Male
  • Nerve Transfer*
  • Spinal Cord Injuries* / complications
  • Spinal Cord Injuries* / surgery
  • Treatment Outcome