The failure of chemotherapy and the emergence of multidrug resistance (MDR) are the major obstacles for effective therapy in locally advanced and metastatic breast cancer. Overexpression of the drug transporter P-glycoprotein (P-gp) in cancer cells is one of the main causes of MDR due to its ability to efflux anticancer drugs out of cells. Although the signaling node that regulates the expression of P-gp has been intensively investigated; the regulatory mechanism underlying P-gp transport activity remains obscure. Herein, we reported that Rack1 and tyrosine kinase Src confer drug resistance through modulating the transport function of P-gp without altering its protein level. We provide evidences that Rack1 and Src regulate P-gp activity by modulating caveolin-1 (Cav1) phosphorylation. Importantly, Rack1 acts as a signaling hub and mediates Src binding to P-gp, thereby facilitating the phosphorylation of Cav1 by Src and abolishing the inhibitory effect of Cav1 on P-gp. Taken together, our results demonstrate the pivotal roles of Rack1 and Src in modulating P-gp activity in drug-resistant cells. Our findings also provide novel insights into the mechanism regulating P-gp transport activity. Rack1 may represent a new target for the development of effective therapies for reversing drug resistance.