Although chemical modifications on conjugated molecules are widely applied for the purpose of improving processability and device performances, the effect of the modification was far less investigated. Here, five S, N-hexacenes are studied to reveal the influences of (1) the lateral alkyl chain, (2) the terminal group (thiophene vs benzene), and (3) the end-capping phenyl group of the hexacenes on the morphology and organic field-effect transistor (OFET) performances. Crystal arrays of the hexacenes were prepared via polydimethylsiloxane (PDMS)-assisted crystallization (PAC) prior to morphological and OFET characterizations. The lattice structures and crystal quality of the hexacenes were evaluated by microscopy and diffraction techniques including single-crystal diffractometer, electron diffraction, and grazing incidence wide-angle X-ray scattering. The systematic analyses led to the following conclusions: (1) the bulkier alkyl side chain assists to form more densely packed crystals with less structural defects; (2) the terminal thiophene rings bring about higher-lying EHOMO, more ordered phase, and crystal orientation, whereas the terminal benzene rings deteriorate the structural order of the active layer and result in the liquid crystal phase; and (3) the phenyl end caps ameliorate the morphological order, intermolecular overlapping, thermal stability and elevate EHOMO. Thus, EH-DTPTt-Ph delivers the highest μh, contributing to high-lying EHOMO, well-oriented crystal array with a longer correlation length, and suitable lattice orientation. This systematic research provides the aspects about the effects of the functionalized S, N-hexacenes on the morphology and OFET characteristics, which is anticipated to be useful for the molecular design of heteroacenes.
Keywords: ,-hexacenes; GIWAXS; chemical modification; morphology; organic field-effect transistor.