Innate immunity is regulated by phagocytic cells and is critical for host control of bacterial infection. In many bacteria, the type VI secretion system (T6SS) can affect bacterial virulence in certain environments, but little is known about the mechanisms underlying T6SS regulation of innate immune responses during infection in vivo. Here, we developed an infection model by microinjecting bacteria into the tail vein muscle of 3-day-post-fertilized zebrafish larvae, and found that both macrophages and neutrophils are essential for bacterial clearance. Further study revealed that EvpP plays a critical role in promoting the pathogenesis of Edwardsiella piscicida (E. piscicida) via inhibiting the phosphorylation of Jnk signaling to reduce the expression of chemokine (CXC motif) ligand 8 (cxcl8a), matrix metallopeptidase 13 (mmp13) and interleukin-1β (IL-1β) in vivo. Subsequently, by utilizing Tg (mpo:eGFP+/+) zebrafish larvae for E. piscicida infection, we found that the EvpP-inhibited Jnk-caspy (caspase-1 homolog) inflammasome signaling axis significantly suppressed the recruitment of neutrophils to infection sites, and the caspy- or IL-1β-morpholino (MO) knockdown larvae were more susceptible to infection and failed to restrict bacterial colonization in vivo. taken together, this interaction improves our understanding about the complex and contextual role of a bacterial T6SS effector in modulating the action of neutrophils during infection, and offers new insights into the warfare between bacterial weapons and host immunological surveillance.
Keywords: Edwardsiella piscicida; Jnk-caspy inflammasome pathway; Neutrophils recruitment; T6SS effector.
Copyright © 2019 Elsevier Ltd. All rights reserved.