Chemotherapy Alters the Phylogenetic Molecular Ecological Networks of Intestinal Microbial Communities

Front Microbiol. 2019 May 7:10:1008. doi: 10.3389/fmicb.2019.01008. eCollection 2019.

Abstract

Intestinal microbiota is now widely known to play key roles in nutritional uptake, metabolism, and regulation of human immune responses. There are multiple studies assessing intestinal microbiota changes in response to chemotherapy. In this study, microbial phylogenetic molecular ecological networks (pMENs) were firstly used to study the effects of chemotherapy on the intestinal microbiota of colorectal cancer (CRC) patients. Based on the random network model, we demonstrated that overall network structures and properties were significantly changed by chemotherapy, especially in average path length, average clustering coefficient, average harmonic geodesic distance and modularity (P < 0.05). The taxa in the module tended to co-exclude rather than co-occur in CRC patient networks, indicating probably competition relationships. The co-exclude correlations were decreased by 37.3% from T0 to T5 in response to chemotherapy. Significantly negative correlations were observed in positive/negative OTU degree and tumor markers (P < 0.05). Furthermore, the topological roles of the OTUs (module hubs and connectors) were changed with the chemotherapy. For example, the OTU167, OTU8, and OTU9 from the genera Fusobacterium, Bacteroides, and Faecalibacterium, respectively, were identified as keystone taxa, which were defined as either "hubs" or OTUs with highest connectivity in the network. These OTUs were significantly correlated with tumor markers (P < 0.05), suggesting that they probably were influenced by chemotherapy. The pMENs constructed in this study predicted the potential effects of chemotherapy on intestinal microbial community co-occurrence interactions. The changes may have an effect on the therapeutic effects. However, larger clinical samples are required to identify the conclusion.

Keywords: chemotherapy; colorectal cancer; high-throughput sequencing; intestinal microbiota; phylogenetic molecular ecological networks.