Chemical genomics has been applied extensively to evaluate small molecules that modulate biological processes in Saccharomyces cerevisiae. Here, we use yeast as a surrogate system for studying compounds that are active against metazoan targets. Large-scale chemical-genetic profiling of thousands of synthetic and natural compounds from the Chinese National Compound Library identified those with high-confidence bioprocess target predictions. To discover compounds that have the potential to function like therapeutic agents with known targets, we also analyzed a reference library of approved drugs. Previously uncharacterized compounds with chemical-genetic profiles resembling existing drugs that modulate autophagy and Wnt/β-catenin signal transduction were further examined in mammalian cells, and new modulators with specific modes of action were validated. This analysis exploits yeast as a general platform for predicting compound bioactivity in mammalian cells.
Keywords: Wnt/β-catenin signaling pathway; autophagy; chemical genomics; tubulin cytoskeleton assembly; yeast.