Purpose: In research settings, circulating tumor DNA (ctDNA) shows promise as a tumor-specific biomarker for pancreatic ductal adenocarcinoma (PDAC). This study aims to perform analytical and clinical validation of a KRAS ctDNA assay in a Clinical Laboratory Improvement Amendments (CLIA) and College of American Pathology-certified clinical laboratory.
Experimental design: Digital-droplet PCR was used to detect the major PDAC-associated somatic KRAS mutations (G12D, G12V, G12R, and Q61H) in liquid biopsies. For clinical validation, 290 preoperative and longitudinal postoperative plasma samples were collected from 59 patients with PDAC. The utility of ctDNA status to predict PDAC recurrence during follow-up was assessed.
Results: ctDNA was detected preoperatively in 29 (49%) patients and was an independent predictor of decreased recurrence-free survival (RFS) and overall survival (OS). Patients who had neoadjuvant chemotherapy were less likely to have preoperative ctDNA than were chemo-naïve patients (21% vs. 69%; P < 0.001). ctDNA levels dropped significantly after tumor resection. Persistence of ctDNA in the immediate postoperative period was associated with a high rate of recurrence and poor median RFS (5 months). ctDNA detected during follow-up predicted clinical recurrence [sensitivity 90% (95% confidence interval (CI), 74%-98%), specificity 88% (95% CI, 62%-98%)] with a median lead time of 84 days (interquartile range, 25-146). Detection of ctDNA during postpancreatectomy follow-up was associated with a median OS of 17 months, while median OS was not yet reached at 30 months for patients without ctDNA (P = 0.011).
Conclusions: Measurement of KRAS ctDNA in a CLIA laboratory setting can be used to predict recurrence and survival in patients with PDAC.
©2019 American Association for Cancer Research.