Association between histone lysine methyltransferase KMT2C mutation and clinicopathological factors in breast cancer

Biomed Pharmacother. 2019 Aug:116:108997. doi: 10.1016/j.biopha.2019.108997. Epub 2019 May 27.

Abstract

As an important regulator of epigenetics, histone lysine methyltransferase 2C (KMT2C), is frequently mutated in multiple human cancers and is considered to be crucial for the occurrence and development of numerous cancers. However, the relationship between KMT2C mutation and clinicopathological characteristics in patients with breast cancer is unclear. In the present study, we performed next-generation sequencing to investigate the mutation status of KMT2C in 411 treatment-naive Chinese patients with breast cancer at Guangdong Provincial People's Hospital (GDPH), and further compared the results to those of patients with breast cancer from The Cancer Genome Atlas (TCGA, n = 981) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, n = 1454) cohorts. The KMT2C mutation rate was 8.0% (33/411) in the GDPH cohort, whereas that in the TCGA and the METABRIC cohorts was 7.0% (69/981) and 14.5% (211/1454), respectively. Nineteen novel mutations were observed in the GDPH cohort. KMT2C mutations were found to be significantly associated with patients older than 50 years (GDPH: p = 0.007; TCGA: p = 0.005; METABRIC: p = 0.015). The KMT2C mutation rate in HR+/HER2- breast cancer patients was higher than that in the other subtypes (GDPH: p = 0.047; TCGA: p = 0.032; METABRIC: p = 0.046). In addition, KMT2C mutations in the GDPH cohort were observed in invasive lobular breast cancer (ILC) at 30.8% (4/13). Further, KMT2C mutation was not found to be an independent risk factor in the prognosis of patients with breast cancer [TCGA: hazard ratio (HR), 1.71; 95% confidence interval (CI), 0.88-3.31; p = 0.111; METABRIC: HR, 2.03; 95% CI, 0.45-3.08; p = 0.419]. This is the first study to preliminarily elucidate the role of KMT2C mutations in Chinese patients with breast cancer and further identified significant KMT2C mutation differences according to race and ethnicity. KMT2C might be a susceptibility gene of Chinese patients with ILC that would help define high-risk groups that could benefit from adapted, personalized screening strategies.

Keywords: Breast cancer; Epigenetics; KMT2C mutation; Next-generation sequencing technique.

MeSH terms

  • Breast Neoplasms / genetics*
  • Breast Neoplasms / pathology*
  • Cohort Studies
  • DNA-Binding Proteins / genetics*
  • Female
  • Genetic Association Studies*
  • Genetic Predisposition to Disease*
  • Humans
  • Kaplan-Meier Estimate
  • Middle Aged
  • Multivariate Analysis
  • Mutation / genetics*
  • Proportional Hazards Models
  • Treatment Outcome

Substances

  • DNA-Binding Proteins
  • KMT2C protein, human