Peroxiredoxin 1 (Prx1) is a member of the Prx family that detoxifies various peroxide substrates through conserved catalytic cysteine residues with the use of reducing equivalents. In addition to this well-known role of Prx1, we have previously demonstrated that Prx1 also has RNA-binding properties, but its function as an RNA-binding protein (RBP) remains unknown. To characterize the role of Prx1 as an RBP, we pulled down Prx1-RNA complexes and sequenced the target RNAs of Prx1. Through sequencing and further validation studies, we revealed that Prx1 binds to a specific subset of small nucleolar RNAs (snoRNAs) and regulates these molecules at the post-transcriptional level. We also found that active cysteine residues provide a structural and functional link between these two distinct functions of Prx1 (i.e., ROS scavenging and RNA-binding activities). Prx1 functions as a snoRNA-binding protein in its reduced state, and post-transcriptionally regulates the expression of a set of snoRNAs. However, when the active cysteine residues are oxidized, Prx1 loses its activity as a snoRNA-binding protein. This study is the first report describing the novel role of Prx1 as a post-transcriptional regulator of snoRNAs.
Keywords: Peroxiredoxin1; Post-transcriptional regulation; Protein-RNA interaction; RNA-binding protein; Small nucleolar RNA.
Copyright © 2019 Elsevier Inc. All rights reserved.