Objective: To evaluate the performance of a diagnostic protocol for neonatal/infantile cholestasis in which the main clinical patterns steered the early use of different genetic testing strategies.
Study design: An observational study was conducted between 2012 and 2017 in a tertiary care setting on a prospective cohort of children with cholestasis occurring at ≤1 year of age and persisting ≥6 weeks, to measure the detection rate of underlying monogenic diseases. After the exclusion of biliary atresia, a clinically driven genetic testing was performed, entailing 3 different approaches with different wideness: confirmatory single-gene testing; focused virtual panels; and wide search through trio whole-exome sequencing.
Results: We enrolled 125 children (66 female, median age 2 months); 96 (77%) patients had hypocholic stools and were evaluated rapidly to exclude biliary atresia, which was the final diagnosis in 74 (59%). Overall, 50 patients underwent genetic testing, 6 with single confirmatory gene testing, 38 through panels, and 6 with trio whole-exome sequencing because of complex phenotype. The genetic testing detection rate was 60%: the final diagnosis was Alagille syndrome in 11, progressive familial intrahepatic cholestasis type 2 in 6, alpha-1-antitrypsin deficiency in 3, and progressive familial intrahepatic cholestasis type 3 in 2; a further 7 genetic conditions were identified in 1 child each. Overall, only 18 of 125 (14%) remained with an indeterminate etiology.
Conclusions: This protocol combining clinical and genetic assessment proved to be an effective diagnostic tool for neonatal/infantile cholestasis, identifying inherited disorders with a high detection rate. It also could allow a noninvasive diagnosis in children presenting with colored stools.
Keywords: Alagille syndrome; biliary atresia; diagnosis; etiology; familial cholestasis; genetic testing; infantile cholestasis; monogenic liver disease; neonatal cholestasis; next-generation sequencing.
Copyright © 2019 Elsevier Inc. All rights reserved.