Background: National, state, and local policies contributed to a 65% reduction in sulfur dioxide emissions from coal-fired power plants between 2005 and 2012 in the United States, providing an opportunity to directly quantify public health benefits attributable to these reductions under an air pollution accountability framework.
Methods: We estimate ZIP code-level changes in two different-but related-exposure metrics: total PM2.5 concentrations and exposure to coal-fired power plant emissions. We associate changes in 10 health outcome rates among approximately 30 million US Medicare beneficiaries with exposure changes between 2005 and 2012 using two difference-in-difference regression approaches designed to mitigate observed and unobserved confounding.
Results: Rates per 10,000 person-years of six cardiac and respiratory health outcomes-all cardiovascular disease, chronic obstructive pulmonary disorder, cardiovascular stroke, heart failure, ischemic heart disease, and respiratory tract infections-decreased by between 7.89 and 1.95 per (Equation is included in full-text article.)decrease in PM2.5, with comparable decreases in coal exposure leading to slightly larger rate decreases. Results for acute myocardial infarction, heart rhythm disorders, and peripheral vascular disease were near zero and/or mixed between the various exposure metrics and analyses. A secondary analysis found that nonlinearities in relationships between changing health outcome rates and coal exposure may explain differences in their associations.
Conclusions: The direct analyses of emissions reductions estimate substantial health benefits via coal power plant emission and PM2.5 concentration reductions. Differing responses associated with changes in the two exposure metrics underscore the importance of isolating source-specific impacts from those due to total PM2.5 exposure.