The high-risk human papillomaviruses (HR-HPVs) are involved in the development of cervical cancer. Nevertheless, there are differences in the oncogenic potential among them. HPV-16 and HPV-18 are associated with approximately 70% of cancer worldwide, and both types are the most extensively studied HR-HPV. Great variations in the prevalence of HR-HPV have been described in different countries. The impact of these variations on the epidemiology of lesions and cervical cancer is currently unknown. A high prevalence of HPV-66 has been detected in Chile. Here, we have analyzed the genetic variability of the L1 gene from HPV-66-infected Chilean women. Higher order interactions between identified mutations were analyzed by co-variation and cluster analyses. Antigenic-index alterations following L1 mutations and B-cell epitopes were predicted by BcePred algorithm. HPV-66 L1 sequences clustered phylogenetically into two main clades. The genetic variability in the HPV-66 L1 gene involved thirty nucleotide changes. Four of these were for the first time identified in this study. Some of these variants are embedded in the B-cell epitope regions. Amino acid homology in the immunodominant epitopes of HPV-66 L1 protein (DE, FG and H1 loops) was 42.9-59.1% and 28.6-68.9% compared with HPV-16 and HPV-18, respectively. The results of this research suggest that the neutralizing epitopes of HPV-66 are antigenically different compared to HPV-16 and HPV-18. Our findings show the need to perform new structural and immunological studies on HPV-66 L1 protein to evaluate the cross-protection conferred by current HPV vaccines.
Keywords: Genetic variability; HPV-66; Human papillomavirus; L1 gene.