Peanut is one of the most important oilseed crops grown worldwide. In this study, the mutant ahFAD2 alleles conferring high oleic (HO) content are introgressed into an elite Indian cultivar GPBD4 which is also resistant to the foliar fungal diseases like rust and late leaf spot (LLS). The allele-specific PCR (AS-PCR) and cleaved amplified polymorphic sequences (CAPS) assays were used for the marker-assisted backcross (MABC) approach and 64 HO introgression lines (ILs) were generated. These ILs were tested for the FA compositions under the glasshouse and field conditions. The oleic acid and linoleic acid contents in the ILs were recorded to be between 68.94-82.33% and 1.74-10.87%, respectively, under glasshouse and 67.04-81.71% and 2.00-15.66%, respectively, under field conditions. The increase in the oleic acid content of the ILs over its recurrent parent (RP) was recorded to the tune of 28.78-53.80% and 33.70-62.96% under glasshouse and field conditions, respectively, indicating the stable expression of ahFAD2B gene in two different environments. On the contrary, linoleic acid showed 56.47-93.03% and 40.02-92.34% reduction in the ILs over its RP under glasshouse and field conditions, respectively. These ILs with a healthy FA profile can meet not only the nutritional requirements of a health-conscious society but also the industrial demands for better shelf life of oil and its products.
Keywords: Allele-specific PCR; Fatty acid desaturase; Groundnut; High oleate; Introgression lines; MABC.