Protopanaxadiol is dammarane-type tetracyclic triterpene sapogenin found in ginseng and has a high medicinal values. We successfully constructed transgenic rice producing protopanaxadiol by introducing the ginseng PgDDS and CYP716A47 genes in this crop plant. Protopanaxadiol (PPD), an aglycone of ginsenosides, possesses pleiotropic anticarcinogenesis activities in many cancers. Here, we constructed transgenic rice overexpressing the Panax ginseng dammarenediol-II synthase gene (PgDDS) and protopanaxadiol synthase gene (CYP716A47) driven by a rice endosperm-specific α-globulin promoter. Among more than 50 independent lines, five transgenic lines were selected. The introduction of the genes in the T1 generation of the transgenic lines was confirmed by genomic PCR. The expression of the introduced genes in T2 seeds was confirmed by qPCR. Methanol extracts of transgenic rice grains were analyzed by LC/MS to detect the production of PPD and dammarenediol-II (DD). The production of both PPD and DD was identified not only by comparing the retention times but also mass fraction patterns of authentic PPD and DD standards. The mean concentrations of PPD and DD in rice grains were 16.4 and 4.5 µg/g dry weight, respectively. The invention of genetically engineered rice grains producing PPD and DD can be applied to rice breeding to reinforce new medicinal values.
Keywords: CYP716A47; Dammarenediol-II synthase; Protopanaxadiol; Sapogenin; Transgenic rice.