Four commercially available sorbents (BioChar (BC), ThiolSAMMS® (TS), SediMite (SM), and Organoclay™ PM-199 (OC-199)) were tested for their ability to sorb methylmercury (MeHg) and MeHg complexed with dissolved organic matter (DOM). Testing sorption behavior with DOM is more representative of the environmental conditions and mercury speciation expected during in-situ remediation efforts. Isotherms were fit using a robust, iterative re-weighting scheme. This fitting approach improves upon the traditionally used indirect sorption method by removing the dependence between aqueous and solid phase concentrations in isotherm fitting. Developed isotherms show that without DOM, BC, TS, and SM adsorbed similar amounts of MeHg while OC-199 sorbed substantially less MeHg. Below an equilibrium concentration of 5.6 ng L-1 BC was the best performing sorbent, between 5.6 and 20.9 ng L-1 SM sorbed the most MeHg, and above an equilibrium concentration of 20.9 ng L-1 TS outperformed the other sorbents. BC and OC-199 showed indication of MeHg sorption saturation over the tested concentration range of 3.5-680 ng L-1. With DOM, SM outperformed the other sorbents at equilibrium concentrations less than 0.98 ng L-1 and TS was the superior MeHg:DOM sorbent at higher concentrations. MeHg:DOM sorption was controlled by DOM-sorbent interactions. DOM decreased MeHg sorption onto BC and SM whereas TS exhibited similar sorption with and without DOM. OC-199 had slightly higher MeHg uptake with DOM. East Fork Poplar Creek (EFPC), an industrially Hg contaminated site, was used as a case study example to build a relationship between aqueous and fish MeHg concentrations and subsequently compare the cost of sorbent materials required to meet regulatory objectives. For this case study, SM provided the most cost-effective sorbent option for in-situ remediation efforts to reduce aqueous MeHg concentrations.
Keywords: Dissolved organic matter; Isotherm; Mercury; Methylmercury; Sorbents; Sorption.
Copyright © 2019 Elsevier Ltd. All rights reserved.