Interferon-γ (IFNγ) has been studied as a cancer treatment with limited evidence of clinical benefit. However, it could play a role in cancer immunotherapy combination treatments. Despite high expression of immunogenic cancer-testis antigens, synovial sarcoma (SS) and myxoid/round cell liposarcoma (MRCL) have a cold tumor microenvironment (TME), with few infiltrating T cells and low expression of major histocompatibility complex class I (MHC-I). We hypothesized that IFNγ treatment could drive inflammation in a cold TME, facilitating further immunotherapy. We conducted a phase 0 clinical trial treating 8 SS or MRCL patients with weekly systemic IFNγ. We performed pre- and posttreatment biopsies. IFNγ changed the SS and MRCL TME, inducing tumor-surface MHC-I expression and significant T-cell infiltration (P < 0.05). Gene-expression analysis suggested increased tumor antigen presentation and less exhausted phenotypes of the tumor-infiltrating T cells. Newly emergent antigen-specific humoral and/or T-cell responses were found in 3 of 7 evaluable patients. However, increased expression of PD-L1 was observed on tumor-infiltrating myeloid cells and in some cases tumor cells. These findings suggest that systemic IFNγ used to convert SS and MRCL into "hot" tumors will work in concert with anti-PD-1 therapy to provide patient benefit.
©2019 American Association for Cancer Research.