The degradation of purified Neisseria gonorrhoeae peptidoglycan (PG) by granule extract derived from normal human polymorphonuclear leukocytes was examined. Hen egg lysozyme-resistant, extensively O-acetylated [3H]PG (O-PG) from strain FA19 and lysozyme-sensitive, non-O-acetylated [14C]PG (non-O-PG) from strain RD5 (each containing label in both glucosamine and muramic acid) were mixed and incubated with granule extract at pHs 4.5, 5.5, and 6.5. The rate of degradation of O-PG was uniformly slower than that of non-O-PG in the same tube, but ultimately, even the O-PG was rendered completely soluble. Molecular-sieve high-performance liquid chromatography revealed that both PGs were degraded by granule extract at the pH values tested to disaccharide peptide monomers and peptide-cross-linked oligomers, reflecting the action of human lysozyme. Of particular interest was the appearance of a peak containing free N-acetylglucosamine which was quite prominent in reaction mixtures at pH 4.5, less prominent at pH 5.5, and not detectable at pH 6.5. Free N-acetylglucosamine was not released from control PG samples at any pH in the absence of granule extract. Treatment of purified gonococcal PG monomers with granule extract at pH 4.5 yielded exclusively free N-acetylglucosamine and muramyl peptides with no N-acetylglucosamine. These data suggest that granule extract contains a previously undescribed pH-dependent N-acetylglucosaminidase with specificity for PG as well as an N-acetylmuramidase activity that degrades O-PG less efficiently than it does non-O-PG.