Effects of low-frequency electromagnetic fields (LF EMF) on the activation of different tissue recovery processes have not yet been fully understood. The detailed quantification of LF EMF effects on the angiogenesis were analysed in our experiments by using cultured human and mouse endothelial cells. Two types of fields were used in the tests as follows: the LF EMF with rectangular pulses, 340-microsecond mode at a frequency of 72 Hz and peak intensity 4 mT, and the LF EMF with sinusoidal alternating waveform 5 000 Hz, amplitude-modulated by means of a special interference spectrum mode set to a frequency linear sweep from 1 to 100 Hz for 6 s and from 100 Hz to 1 Hz return also for 6 s, swing period of 12 second. Basic parameters of cultured cells measured after the LF EMF stimulus were viability and proliferation acceleration. Both types of endothelial cells (mouse and human ones) displayed significant changes in the proliferation after the application of the LF EMF under conditions of a rectangular pulse mode. Based on the results, another test of the stimulation on a more complex endothelial-fibroblast coculture model will be the future step of the investigation.