Cardiovascular disease and cancer are leading contributors to the global disease burden. As a result of cancer therapy-related cardiotoxicities, cardiovascular disease results in significant morbidity and mortality in cancer survivors and patients with active cancer. There is an unmet need for management of cardio-oncology conditions, which is predicted to reach epidemic proportions, and better understanding of their pathophysiology and treatment is urgently required. The proposed mechanisms underlying cardiotoxicity induced by 5-fluorouracil (5-FU) are vascular endothelial damage followed by thrombus formation, ischaemia secondary to coronary artery vasospasm, direct toxicity on myocardium and thrombogenicity. In patients with angina and electrocardiographic evidence of myocardial ischaemia due to chemotherapy-related coronary artery vasospasm, termination of chemotherapy and administration of calcium channel blockers or nitrates can improve ischaemic symptoms. However, coronary artery vasospasm can reoccur with 5-FU re-administration with limited effectiveness of vasodilator prophylaxis observed. While pre-existing coronary artery disease may increase the ischaemic potential of 5-FU, cardiovascular risk factors do not appear to completely predict the development of cardiac complications. Pharmacogenomic studies and genetic profiling may help predict the occurrence and streamline the treatment of 5-FU-induced coronary artery vasospasm. Echocardiographic measures such as the Tei index may help detect subclinical 5-FU cardiotoxicity. Further research is required to explore the cardioprotective effect of agents such as coenzyme complex, GLP-1 analogues and degradation inhibitors on 5-FU-induced coronary artery vasospasm.
Keywords: 5-fluorouracil; calcium channel blockers; capecitabine; coronary artery vasospasm; diltiazem; verapamil.