Density Functional Calculations of Electron Paramagnetic Resonance g- and Hyperfine-Coupling Tensors Using the Exact Two-Component (X2C) Transformation and Efficient Approximations to the Two-Electron Spin-Orbit Terms

J Phys Chem A. 2019 Jul 5;123(26):5660-5672. doi: 10.1021/acs.jpca.9b03979. Epub 2019 Jun 25.

Abstract

A two-component quasirelativistic density functional theory implementation of the computation of hyperfine and g-tensors at exact two-component (X2C) and Douglas-Kroll-Hess method (DKH) levels in the Turbomole code is reported and tested for a series of smaller 3d1, 4d1, and 5d1 complexes, as well as for some larger 5d7 Ir and Pt systems in comparison with earlier four-component matrix-Dirac-Kohn-Sham results. A main emphasis is placed on efficient approximations to the two-electron spin-orbit contributions, comparing an existing implementation of two variants of Boettger's "scaled nuclear spin-orbit" (SNSO) approximation in the code with a newly implemented atomic mean-field spin-orbit (AMFSO) approximation. The different variants perform overall comparably well with the four-component data. The AMFSO approximation has the added advantage of being able to include the spin-other-orbit contributions arising from the Gaunt term of relativistic electron-electron interactions. These are of comparably larger importance for the 3d complexes than for their heavier homologues. The excellent agreement between X2C and four-component electron paramagnetic resonance parameter results provides the opportunity to treat large systems efficiently and accurately with the computationally more expedient two-component quasirelativistic methodology.