Perioperative or circulatory forces enhance disseminated cancer cell adhesiveness by modulating focal adhesion kinase (FAK)-Akt1 interaction. Selectively blocking FAK-Akt1 interaction by a peptide derived from the FAK-Four-point-one, ezrin, radixin, moesin (FERM) domain reduces colon cancer cell adhesion in vitro and in mice. A preliminary in silico screening identified two small molecules resembling a peptide that may inhibit pressure-stimulated SW620 cancer cell adhesion to collagen I. The present study selected ZINC4085554 for further study to validate its proposed mechanism of action, using human SW620 colon cancer cells as a model system. At 25 and 50 µM, ZINC4085554 inhibited the pressure-stimulated adhesion of SW620 colon cancer cells to collagen I. This molecule prevented pressure-stimulated FAK-Tyr-397 phosphorylation; however, it did not affect Akt1-Ser-473 phosphorylation, indicating that ZINC4085554 acts downstream of Akt1, while Akt-Thr-308 remains unchanged in the presence of pressure and or ZINC4085554. Indeed, ZINC4085554 inhibited FAK-Akt1 interaction in response to increased extracellular pressure, consistent with the proposed mechanism. ZINC4085554 did not inhibit FAK-Tyr-397 phosphorylation in response to cell adhesion to collagen I, indicating the specificity of the inhibitory effects towards force-stimulated pathways. Finally, the present study confirmed that ZINC4085554 at 50 µM prevented pressure-activation of adhesion to surgical wounds in vivo in parallel to its ablation of intracellular signaling. In summary, ZINC4085554 is a small molecule mimicking part of the structure of FAK that reduces cancer cell adhesion by impairing pressure-stimulated FAK-Akt1 interaction and its downstream consequences. ZINC4085554 does not inhibit conventional outside-in FAK signaling and may be less toxic than global FAK inhibitors, and ZINC4085554 may be an important step towards the inhibition of metastasis.
Keywords: Akt1; adhesion; colon cancer; focal adhesion kinase; metastasis; pressure; small molecule.