Biodistribution and sensitive tracking of immune cells with plasmonic gold nanostars

Int J Nanomedicine. 2019 May 9:14:3403-3411. doi: 10.2147/IJN.S192189. eCollection 2019.

Abstract

Aim: To quantitatively and sensitively investigate the biodistribution of immune cells after systemic administration. Methods: Immune cells were loaded with plasmonic gold nanostars (GNS) tracking probes. Inductively coupled plasma mass spectrometry (ICP-MS) was used for quantitative gold mass measurement and two-photon photoluminescence (TPL) was used for high-resolution sensitive optical imaging. Results: GNS nanoparticles were loaded successfully into immune cells without negative effect on cellular vitality. Liver and spleen were identified to be the major organs for macrophage cells uptake after systematic administration. A small amount of macrophage cells were detected in the tumor site in our murine lymphoma animal model. Conclusion: GNS has great potential as a biocompatible marker for quantitative tracking and high-resolution imaging of immune cells at the cellular level.

Keywords: GNS; ICP-MS; biodistribution; immune cells; two-photon microscopy.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Survival
  • Gold / chemistry*
  • Lymphocytes / metabolism*
  • Macrophages / metabolism
  • Metal Nanoparticles / administration & dosage
  • Metal Nanoparticles / chemistry*
  • Metal Nanoparticles / ultrastructure
  • Mice, Inbred C57BL
  • Tissue Distribution

Substances

  • Gold