The demand for development of new drugs remains on the upward trend because of the large number of patients suffering from intractable diseases for which effective treatment has not been established yet. Recently, several researchers have attempted to apply induced pluripotent stem cell (iPSC) technology as a powerful tool for studying the mechanisms underlying the onset of various diseases and for new drug screening. This technology has made an enormous breakthrough, since it permits us to recapitulate the disease phenotype in vitro, outside of the patient's body. Here, we discuss the latest findings that uncovered a mechanism underlying the pathology of a rare genetic musculoskeletal disease, fibrodysplasia ossificans progressiva (FOP), by modeling the phenotypes with FOP patient-derived iPSCs, and that discovered promising candidate drugs for FOP treatment. We also discussed future directions of FOP research.
Keywords: Disease modeling; Drug discovery; Fibrodysplasia ossificans progressiva; Induced pluripotent stem cell; Rapamycin.