Electrochemical sensing of L-ascorbic acid (AA) is reported based on the use of a redox-active molybdophosphate film on a glassy carbon electrode (GCE). Molybdophosphate is formed by reacting hydroxyapatite nanoparticles with sodium molybdate. The modified GCE can be utilized for detection of AA, typically at a working potential of 0.4 V (vs. Ag/AgCl). The GCE has a decreased overpotential and enhanced sensitivity (219 μA·mM-1·cm-2). Response is linear in the 1 μM to 1.5 mM AA concentration range, and the limit of detection is 4 nM. The selectivity of this sensor makes it a useful tool for accurate determination of AA in practical samples as shown for a vitamin C tablet and for spiked beverages. Graphical abstract An electrochemical sensing platform is reported that is based on the use of a redox-active molybdophosphate film that was formed via reacting hydroxyapatite nanoparticles (HAP-NPs) with sodium molybdate. Graphical abstract contains poor quality of text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.We have uploaded the graphical abstract as PDF format.
Keywords: Hydroxyapatite nanoparticles; L-Ascorbic acid; Molybdate; Molybdophosphate film.