Development of effective catalysts for oxygen reduction reaction (ORR) plays a critical role in the applications of a range of electrochemical energy technologies. In this study, thin-layered black phosphorus (TLBP) was used as a unique supporting substrate for the deposition of metal nanoparticles (MNPs, M = Pt, Ag, Au), and the resulting M-TLBP nanocomposites were found to exhibit apparent ORR activity that was readily manipulated by interfacial charge transfer from TLBP to MNPs. This was confirmed by results from X-ray photoelectron spectroscopic measurements and density functional theory calculations. In comparison to the carbon-supported counterparts, Ag-TLBP and Au-TLBP showed enhanced ORR performance, while a diminished performance was observed with Pt-TLBP. This was consistent with the predictions from the "volcano plot". Results from this study suggest that black phosphorus can serve as a unique addition in the toolbox of manipulating electronic properties of supported metal nanoparticles and their electrocatalytic activity.
Keywords: black phosphorus; electron transfer; metal nanoparticle; oxygen reduction reaction; volcano plot.