Identification of Small Molecules Exhibiting Oxacillin Synergy through a Novel Assay for Inhibition of vraTSR Expression in Methicillin-Resistant Staphylococcus aureus

Antimicrob Agents Chemother. 2019 Aug 23;63(9):e02593-18. doi: 10.1128/AAC.02593-18. Print 2019 Sep.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) strains that are resistant to all forms of penicillin have become an increasingly common and urgent problem threatening human health. They are responsible for a wide variety of infectious diseases ranging from minor skin abscesses to life-threatening severe infections. The vra operon that is conserved among S. aureus strains encodes a three-component signal transduction system (vraTSR) that is responsible for sensing and responding to cell wall stress. We developed a novel and multifaceted assay to identify compounds that potentiate the activity of oxacillin, essentially restoring efficacy of oxacillin against MRSA, and performed high-throughput screening (HTS) to identify oxacillin potentiators. HTS of 13,840 small-molecule compounds from an antimicrobial-focused Life Chemicals library, using the MRSA cell-based assay, identified three different inhibitor scaffolds. Checkerboard assays for synergy with oxacillin, reverse transcriptase PCR (RT-PCR) assays against vraR expression, and direct confirmation of interaction with VraS by surface plasmon resonance (SPR) further verified them to be viable hit compounds. A subsequent structure-activity relationship (SAR) study of the best scaffold with diverse analogs was utilized to improve potency and provides a strong foundation for further development.

Keywords: VraTSR; histidine kinase; inhibitors; methicillin-resistant Staphylococcus aureus; oxacillin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Histidine Kinase / genetics
  • Histidine Kinase / metabolism
  • Methicillin-Resistant Staphylococcus aureus / drug effects*
  • Methicillin-Resistant Staphylococcus aureus / genetics
  • Microbial Sensitivity Tests
  • Oxacillin / pharmacology*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Staphylococcus aureus / drug effects
  • Staphylococcus aureus / genetics
  • Structure-Activity Relationship

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • Histidine Kinase
  • Oxacillin