Concentration-Dependent Effects of Fibroblast-Like Synoviocytes on Collagen Gel Multiscale Biomechanics and Neuronal Signaling: Implications for Modeling Human Ligamentous Tissues

J Biomech Eng. 2019 Sep 1;141(9):0910131-09101312. doi: 10.1115/1.4044051.

Abstract

Abnormal loading of a joint's ligamentous capsule causes pain by activating the capsule's nociceptive afferent fibers, which reside in the capsule's collagenous matrix alongside fibroblast-like synoviocytes (FLS) and transmit pain to the dorsal root ganglia (DRG). This study integrated FLS into a DRG-collagen gel model to better mimic the anatomy and physiology of human joint capsules; using this new model, the effect of FLS on multiscale biomechanics and cell physiology under load was investigated. Primary FLS cells were co-cultured with DRGs at low or high concentrations, to simulate variable anatomical FLS densities, and failed in tension. Given their roles in collagen degradation and nociception, matrix-metalloproteinase (MMP-1) and neuronal expression of the neurotransmitter substance P were probed after gel failure. The amount of FLS did not alter (p > 0.3) the gel failure force, displacement, or stiffness. FLS doubled regional strains at both low (p < 0.01) and high (p = 0.01) concentrations. For high FLS, the collagen network showed more reorganization at failure (p < 0.01). Although total MMP-1 and neuronal substance P were the same regardless of FLS concentration before loading, protein expression of both increased after failure, but only in low FLS gels (p ≤ 0.02). The concentration-dependent effect of FLS on microstructure and cellular responses implies that capsule regions with different FLS densities experience variable microenvironments. This study presents a novel DRG-FLS co-culture collagen gel system that provides a platform for investigating the complex biomechanics and physiology of human joint capsules, and is the first relating DRG and FLS interactions between each other and their surrounding collagen network.