Objective: This study aimed to validate non-invasive RHD genotyping of cell-free fetal DNA (cff-DNA) using different DNA extraction methods and of fresh and frozen extracted cff-DNA.
Background: Non-invasive RHD genotyping of cff-DNA predicts fetal RhD phenotype, allowing for the rational implementation of antenatal immunoprophylaxis and representing a big step forward in the management of RhD-immunised women. Validation of a diagnostic method is mandatory before its clinical application.
Methods: RhD-negative pregnant women were recruited at different gestational ages. The cff-DNA extraction was carried out using manual and automatic methods in order to improve cff-DNA yield and optimise the extraction. Fetal RHD genotyping was performed using a commercial real-time polymerase chain reaction (PCR) kit, and the results were compared with postnatal serological RhD determination on cord blood.
Results: Overall, 133 plasma samples were examined for the validation process, and a total of 423 tests were performed. No differences have been observed between the two extraction methods or between fresh or frozen cff-DNA regarding cff-DNA stability and quality parameters. There was 100% concordance between fetal RHD genotyping of cff-DNA and RhD phenotype on cord blood for both extraction methods on both fresh and frozen cff-DNA.
Conclusion: Our study shows the reliability of automatic and manual cff-DNA extraction methods and the possibility of freezing extracted cff-DNA when performing RHD genotyping. This result might be relevant for improving laboratory work and organisation through the development of a standardised procedure for fetal RHD genotyping on cff-DNA, laying the foundations for evidence-based use of anti-D Ig prophylaxis in RhD pregnant women.
Keywords: validation; antenatal immunoprophylaxis; automatic extraction technique; cell-free fetal DNA; fetal RHD genotyping.
© 2019 British Blood Transfusion Society.