Background In hereditary hyperferritinaemia-cataract syndrome (HHCS), single nucleic acid alterations in the ferritin light chain (L-ferritin) iron response element (IRE) constitutively derepress ferritin synthesis, resulting in hyperferritinaemia, L-ferritin deposits in the lens of the eye and early bilateral cataract onset. Methods In this study, six German families with putative HHCS were analysed. Clinical diagnosis of HHCS was based on medical history, evaluation of ferritin serum levels, transferrin saturation and clinical ophthalmological examination. Diagnosis was confirmed by polymerase chain reaction (PCR)-based DNA sequencing of the L-ferritin IRE. Results Genetic analysis of the L-ferritin IRE revealed relevant single nucleic acid alterations in each of the affected families. Variants c.-168G > A, c.-168G > U and c.-167C > U were located in the C-bulge region; and variants c.-161C > U and c.-157G > A were located in the hexanucleotide loop of the L-ferritin IRE. Conclusions Family history of hyperferritinaemia and juvenile cataracts are strong indicators of HHCS. Genetic analysis of the L-ferritin IRE is a straightforward procedure to confirm the diagnosis. Accurate diagnosis of hyperferritinaemia can avoid unnecessary treatment by venesection, and focus attention on early cataract detection in offspring at risk.
Keywords: IRE side; cataract; ferritin; hyperferritinaemia.