Gunshot residue (GSR) from the discharge of ammunition can provide crucial information in reconstructing criminal cases. Traditional primers create particles of heavy metals such as lead, barium, and antimony. In forensic laboratories, automatic inorganic particle detection is performed by scanning electron microscopy (SEM), using the backscattered electron signal to search for bright residues among the many darker environmental particles, due to higher electron density of the former. Some innovative primers, indicated as heavy metal-free (HMF), produce a residue of elements with atomic numbers below 21, urgently demanding new detecting solutions. For the first time, residues from Sellier & Bellot Nontox HMF primer are demonstrated to emit visible light under electron beam stimulation in a SEM. Cathodoluminescence is then proposed as a promising tool to both detect and characterize residues in forensic cases involving HMF primers, with minor changes to traditional analytical apparatus used for inorganic GSR analysis.
Keywords: Sellier and Bellot Nontox; cathodoluminescence; forensic science; gunshot residue; heavy metal-free primers; scanning electron microscopy.
© 2019 American Academy of Forensic Sciences.