Leeches (Hirudinida) comprise a charismatic, yet often maligned group of organisms. Despite their ecological, economic, and medical importance, a general consensus on the phylogenetic relationships of major hirudinidan lineages is lacking. This absence of a consistent, robust phylogeny of early-diverging lineages has hindered our understanding of the underlying processes that enabled evolutionary diversification of this clade. Here, we used an anchored hybrid enrichment-based phylogenomic approach, capturing hundreds of loci to investigate phylogenetic relationships among major hirudinidan lineages and their closest living relatives. Our results suggest that a dramatic reinterpretation of early leech evolution is warranted. We recovered Branchiobdellida as sister to a clade that includes all major lineages of hirudinidans, but found Acanthobdella to be nested within Oceanobdelliformes. These results cast doubt on the utility of Acanthobdella as a "missing link" used to explain the origin of blood-feeding in hirudineans. Further, our results support a deep divergence between predominantly marine and freshwater lineages, while not supporting the reciprocal monophyly of jawed and proboscis-bearing leeches. To sum up, our phylogenomic resolution of early-diverging leeches provides a necessary foundation for illuminating the evolution of host-symbiont associations and key adaptations that have allowed leeches to colonize a wide diversity of habitats worldwide.
Keywords: Acanthobdella; Hirudinida; anchored hybrid enrichment; phylogeny; sanguivory; symbiosis.
© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.