Normalized optical density (NOD) measured by optical coherence tomography represents neointimal maturity after coronary stent implantation and is correlated with morphologic information provided by both light and electron microscopy. We aimed to test the hypothesis that even second generation drug-eluting stents (DESs) are problematic in terms of neointimal maturity. We implanted bare-metal stents (BMS: n = 14), everolimus-eluting stents (EESs: n = 15) or zotarolimus-eluting stents (ZESs: n = 12) at 41 sites in 32 patients with stable coronary artery disease. OCT was performed at up to 12 months of follow-up, and the average optical density of neointima covering struts was evaluated. NOD was calculated as the optical density of stent-strut covering tissue divided by the optical density of the struts. We also measured circulating CD34+ /CD133+ /CD45low cells, and serum levels of stromal cell-derived factor (SDF)-1, interleukin (IL)-8 and matrix metalloproteinase (MMP)-9 at baseline and follow-up. NOD was lower in the EES (0.70 ± 0.06) group than in the BMS (0.76 ± 0.07, P < 0.05) and ZES (0.76 ± 0.06, P < 0.05) groups. The mean neointimal area (R = 0.33, P < 0.05) and mean neointimal thickness (R = 0.37, P < 0.05) were correlated with NOD. Although NOD was not correlated with percent changes in circulating endothelial progenitor cells, and the levels of SDF-1 and IL-8, it was negatively correlated with the change in MMP-9 level (R = - 0.51, P < 0.01). Neointimal maturity might be lower at EES sites than BMS or ZES sites. This might lead to impaired neointimal tissue growth and matrix degradation. These results suggest a specific pathophysiology after DES implantation.
Keywords: Drug-eluting stent; Neointimal maturity; Optical coherence tomography; Re-endothelialization; Vascular injury.