Background and objectives: Previously, we have shown that 9-cis retinoic acid (9-cis RA) stimulates lymphangiogenesis and limits postsurgical lymphedema in animal models when administered via daily intraperitoneal injections. In this study, we investigate whether a single-use depot 9-cis RA drug delivery system (DDS) implanted at the site of lymphatic injury can mitigate the development of lymphedema in a clinically relevant mouse limb model.
Methods: Hind limb lymphedema was induced via surgical lymphadenectomy and irradiation. Animals were divided into two treatment groups: (1) 9-cis RA DDS, (2) placebo DDS. Outcomes measured included paw thickness, lymphatic clearance and density, epidermal thickness, and collagen deposition.
Results: Compared with control animals, 9-cis RA-treated animals had significantly less paw swelling from postoperative week 3 (P = .04) until the final timepoint at week 6 (P = .0007). Moreover, 9-cis RA-treated animals had significantly faster lymphatic clearance (P < .05), increased lymphatic density (P = .04), reduced lymphatic vessel size (P = .02), reduced epidermal hyperplasia (P = .04), and reduced collagen staining (P = .10).
Conclusions: Animals receiving 9-cis RA sustained-release implants at the time of surgery had improved lymphatic function and structure, indicating reduced lymphedema progression. Thus, we demonstrate that 9-cis RA contained within a single-use depot DDS has favorable properties in limiting pathologic responses to lymphatic injury and may be an effective strategy against secondary lymphedema.
Keywords: 9-cis retinoic acid; depot; drug delivery system; drug pellet; lymphangiogenesis; lymphedema; postsurgical lymphedema; retinoic acid; secondary lymphedema; sustained release.
© 2019 Wiley Periodicals, Inc.