Background: Metastasis is a leading cause of breast cancer mortality. The induction of epithelial-to-mesenchymal transition (EMT) and complex oncogenic signaling is a vital step in the evolution of highly metastatic and therapeutically-intractable breast cancer; necessitating novel target discovery or development of therapeutics that target metastatic breast cells (MBCs).
Methods: To achieve this, this study employs a combination of in silico bioinformatics analyses, protein and transcript analyses, drug sensitivity assays, functional assays and animal studies.
Results: The present study identified CDH11 as an inductor and/or facilitator of metastatic signaling, and biomarker of poor prognosis in MBCs. Furthermore, we showed that in the presence of CDH11-rich cancer-associated fibroblasts (CAFs), MCF7 and MDA-MB-231 MBC cell lines acquired enhanced metastatic phenotype with increased CDH11, β-catenin, vimentin, and fibronectin (FN) expression. We also demonstrated, for the first time to the best of our knowledge that exposure to anti-CDH11 antibody suppresses metastasis, reduces CDH11, FN and β-catenin expression, and abrogate the cancer stem cell (CSC)-like traits of MBC cells. Interestingly, ectopic expression of miR-335 suppressed CDH11, β-catenin and vimentin expression, in concert with attenuated metastatic and CSC potentials of the MBC cells; conversely, inhibition of miR-335 resulted in increased metastatic potential. Finally, corroborating the in silica and in vitro findings, in vivo assays showed that the administration of anti-CDH11 antibody or miR-335 mimic suppressed tumorigenesis and inhibited cancer metastasis.
Conclusions: These findings validate our hypotheses that miR-335 mediates anti-CDH11 antibody therapy response and that an enhanced miR-335/CDH11 ratio elicits marked suppression of the MBC CSC-like and metastatic phenotypes, thus revealing a therapeutically-exploitable inverse correlation between CDH11-enhanced CSC-like and metastatic phenotype and miR-335 expression in MBCs. Thus, we highlight the therapeutic promise of humanized anti-CDH11 antibodies or miR-335-mimic, making a case for their clinical application as efficacious therapeutic option in patients with MBC.
Keywords: Antibody therapeutics; CDH11/β-catenin signaling; Cancer stem cell; Invasive breast cancer; Metastasis; miR-335.