MicroRNA-181c Suppresses the Biological Progression of Osteosarcoma via Targeting SMAD7 and Regulating Transforming Growth Factor-β (TGF-β) Signaling Pathway

Med Sci Monit. 2019 Jun 28:25:4801-4810. doi: 10.12659/MSM.916939.

Abstract

BACKGROUND Osteosarcoma is a primary bone aggressive cancer, affecting adolescents worldwide. Increasing evidence suggests that dysfunction of microRNAs (miRNAs) plays a pivotal role in malignancies. The aim of this study was to evaluate the potential functions of miR-181c and verifying its regulatory effects on SMAD7 in osteosarcoma. MATERIAL AND METHODS The expressions of miR-181c and SMAD7 in osteosarcoma were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, invasion and migration abilities were assessed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) and Transwell assay. Bioinformatics analysis and luciferase reporter assay were used to explore the interaction between miR-181c and SMAD7. Western blot was performed to determine the functions of miR-181c on osteosarcoma cell epithelial-to-mesenchymal transition (EMT) and transforming growth factor-ß (TGF-ß) signaling pathway. RESULTS Decreased expression levels of miR-181c and SMAD7 were identified in osteosarcoma using qRT-PCR. The downregulated miR-181c and SMAD7 expressions indicated poor prognosis of osteosarcoma patients. Moreover, miR-181c overexpression prominently repressed osteosarcoma cell proliferation, invasion, and migration abilities via modulating EMT and TGF-ß signaling pathway. SMAD7 functioned as an important target for miR-181c in osteosarcoma cells. Furthermore, upregulation of miR-181c dramatically suppressed osteosarcoma tumorigenesis in vivo. CONCLUSIONS These findings indicated that miR-181c suppressed osteosarcoma progression, providing new insight into the pathogenesis and representing a potential therapeutic target for osteosarcoma.

MeSH terms

  • Aged
  • Aged, 80 and over
  • Bone Neoplasms / genetics
  • Bone Neoplasms / metabolism*
  • Bone Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Disease Progression
  • Epithelial-Mesenchymal Transition
  • Female
  • Humans
  • Male
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Middle Aged
  • Neoplasm Invasiveness
  • Osteosarcoma / genetics
  • Osteosarcoma / metabolism*
  • Osteosarcoma / pathology
  • Signal Transduction
  • Smad7 Protein / genetics
  • Smad7 Protein / metabolism*
  • Transforming Growth Factor beta / metabolism*
  • Up-Regulation

Substances

  • MIrn181 microRNA, human
  • MicroRNAs
  • SMAD7 protein, human
  • Smad7 Protein
  • Transforming Growth Factor beta