An eight-channel correlation electron cyclotron emission diagnostic for turbulent electron temperature fluctuation measurement in HL-2A tokamak

Rev Sci Instrum. 2019 Jun;90(6):063503. doi: 10.1063/1.5091453.

Abstract

A new correlation electron cyclotron emission (CECE) diagnostic has recently been installed on the HL-2A tokamak in order to study electron temperature fluctuations. Eight radial locations are measured simultaneously through eight pairs of correlated channels. Multiplexers are employed in the intermediate frequency section instead of the conventional separated filter banks to meet strict cross-isolation specifications and lower insertion loss. Relative electron temperature fluctuations are observed by CECE for the first time on the HL-2A by using the spectral decorrelation method. The achieved minimum detectable fluctuation level is up to (T̃e/Te)min∼0.5%. When studying electron temperature fluctuations in the core region with gas puffing, the cross-power spectra show that the amplitude of the electron temperature fluctuation increases in a high temperature and low density plasma. Further analysis demonstrates that the electron temperature gradient ∇Te drives the electron temperature fluctuations together with electron heat transport.