We present a state-of-the-art compact high-energy mid-infrared (mid-IR) laser system for TW-level eight-cycle pulses at 7 μm. This system consists of an Er:Tm:Ho:fiber MOPA which serves as the seeder for a ZGP-based optical parametric chirped pulse amplification (OPCPA) chain, in addition to a Ho:YLF amplifier which is Tm:fiber pumped. Featuring all-optical synchronization, the system delivers 260 mJ pump energy at 2052 nm and 16 ps duration at 100 Hz with a stability of 0.8% rms over 20 min. We show that chirp inversion in the OPCPA chain leads to excellent energy extraction and aids in compression of the 7 μm pulses to eight optical cycles (188 fs) in bulk BaF2 with 93.5% efficiency. Using 21.7 mJ of the available pump energy, we generate 0.75 mJ energy pulses at 7 μm due to increased efficiency with a chirp inversion scheme. The pulse quality of the system's output is shown by generating high harmonics in ZnSe which span up to harmonic order 13 with excellent contrast. The combination of the passive carrier-envelope phase stable mid-IR seed pulses and the high-energy 2052 nm picosecond pulses makes this compact system a key enabling tool for the next generation of studies on extreme photonics, strong field physics, and table-top coherent X-ray science.